488 research outputs found

    Gravitational Radiation Detection with Laser Interferometry

    Get PDF
    Gravitational-wave detection has been pursued relentlessly for over 40 years. With the imminent operation of a new generation of laser interferometers, it is expected that detections will become a common occurrence. The research into more ambitious detectors promises to allow the field to move beyond detection and into the realm of precision science using gravitational radiation. In this article, I review the state of the art for the detectors and describe an outlook for the coming decades.Comment: 38 pages typos, references update

    Subtraction of Newtonian Noise Using Optimized Sensor Arrays

    Get PDF
    Fluctuations in the local Newtonian gravitational field present a limit to high precision measurements, including searches for gravitational waves using laser interferometers. In this work, we present a model of this perturbing gravitational field and evaluate schemes to mitigate the effect by estimating and subtracting it from the interferometer data stream. Information about the Newtonian noise is obtained from simulated seismic data. The method is tested on causal as well as acausal implementations of noise subtraction. In both cases it is demonstrated that broadband mitigation factors close to 10 can be achieved removing Newtonian noise as a dominant noise contribution. The resulting improvement in the detector sensitivity will substantially enhance the detection rate of gravitational radiation from cosmological sources.Comment: 29 pages, 11 figure

    Quantum Limits of Interferometer Topologies for Gravitational Radiation Detection

    Get PDF
    In order to expand the astrophysical reach of gravitational wave detectors, several interferometer topologies have been proposed to evade the thermodynamic and quantum mechanical limits in future detectors. In this work, we make a systematic comparison among them by considering their sensitivities and complexities. We numerically optimize their sensitivities by introducing a cost function that tries to maximize the broadband improvement over the sensitivity of current detectors. We find that frequency-dependent squeezed-light injection with a hundred-meter scale filter cavity yields a good broadband sensitivity, with low complexity, and good robustness against optical loss. This study gives us a guideline for the near-term experimental research programs in enhancing the performance of future gravitational-wave detectors.Comment: grammar correcte

    External quantum efficiency enhancement by photon recycling with backscatter evasion

    Get PDF
    The nonunity quantum efficiency (QE) in photodiodes (PD) causes deterioration of signal quality in quantum optical experiments due to photocurrent loss as well as the introduction of vacuum fluctuations into the measurement. In this paper, we report that the external QE enhancement of a PD was demonstrated by recycling the reflected photons. The external QE for an InGaAs PD was increased by 0.01 - 0.06 from 0.86 - 0.92 over a wide range of incident angles. Moreover, we confirmed that this technique does not increase backscattered light when the recycled beam is properly misaligned

    Astrophysics and cosmology with a deci-hertz gravitational-wave detector: TianGO

    Get PDF
    We present the astrophysical science case for a space-based, deci-Hz gravitational-wave (GW) detector. We particularly highlight an ability in inferring a source's sky location, both when combined with a network of ground-based detectors to form a long triangulation baseline, and by itself for the early warning of merger events. Such an accurate location measurement is the key for using GW signals as standard sirens for constraining the Hubble constant. This kind of detector also opens up the possibility of testing type Ia supernovae progenitor hypotheses by constraining the merger rates of white dwarf binaries with both super- and sub-Chandrasekhar masses separately. We will discuss other scientific outcomes that can be delivered, including the precise determination of black hole spins, the constraint of structure formation in the early Universe, and the search for intermediate-mass black holes

    Towards the Fundamental Quantum Limit of Linear Measurements of Classical Signals

    Get PDF
    The quantum Cram\'er-Rao bound (QCRB) sets a fundamental limit for the measurement of classical signals with detectors operating in the quantum regime. Using linear-response theory and the Heisenberg uncertainty relation, we derive a general condition for achieving such a fundamental limit. When applied to classical displacement measurements with a test mass, this condition leads to an explicit connection between the QCRB and the Standard Quantum Limit which arises from a tradeoff between the measurement imprecision and quantum backaction; the QCRB can be viewed as an outcome of a quantum non-demolition measurement with the backaction evaded. Additionally, we show that the test mass is more a resource for improving measurement sensitivity than a victim of the quantum backaction, which suggests a new approach to enhancing the sensitivity of a broad class of sensors. We illustrate these points with laser interferometric gravitational wave detectors.Comment: revised version with supplemental materials adde

    Angular instability due to radiation pressure in the LIGO gravitational-wave detector

    Get PDF
    We observed the effect of radiation pressure on the angular sensing and control system of the Laser Interferometer Gravitational-Wave Observatory (LIGO) interferometer’s core optics at LIGO Hanford Observatory. This is the first measurement of this effect in a complete gravitational-wave interferometer. Only one of the two angular modes survives with feedback control, because the other mode is suppressed when the control gain is sufficiently large. We developed a mathematical model to understand the physics of the system. This model matches well with the dynamics that we observe

    Probing microplasticity in small scale FCC crystals via Dynamic Mechanical Analysis

    Get PDF
    In small-scale metallic systems, collective dislocation activity has been correlated with size effects in strength and with a step-like plastic response under uniaxial compression and tension. Yielding and plastic flow in these samples is often accompanied by the emergence of multiple dislocation avalanches. Dislocations might be active pre-yield, but their activity typically cannot be discerned because of the inherent instrumental noise in detecting equipment. We apply Alternate Current (AC) load perturbations via Dynamic Mechanical Analysis (DMA) during quasi-static uniaxial compression experiments on single crystalline Cu nano-pillars with diameters of 500 nm, and compute dynamic moduli at frequencies 0.1, 0.3, 1, and 10 Hz under progressively higher static loads until yielding. By tracking the collective aspects of the oscillatory stress-strain-time series in multiple samples, we observe an evolving dissipative component of the dislocation network response that signifies the transition from elastic behavior to dislocation avalanches in the globally pre-yield regime. We postulate that microplasticity, which is associated with the combination of dislocation avalanches and slow viscoplastic relaxations, is the cause of the dependency of dynamic modulus on the driving rate and the quasi-static stress. We construct a continuum mesoscopic dislocation dynamics model to compute the frequency response of stress over strain and obtain a consistent agreement with experimental observations. The results of our experiments and simulations present a pathway to discern and quantify correlated dislocation activity in the pre-yield regime of deforming crystals.Comment: 5 pages, 3 figure

    Quantum precision limits of displacement noise free interferometers

    Full text link
    Current laser-interferometric gravitational wave detectors suffer from a fundamental limit to their precision due to the displacement noise of optical elements contributed by various sources. Several schemes for Displacement-Noise Free Interferometers (DFI) have been proposed to mitigate their effects. The idea behind these schemes is similar to decoherence-free subspaces in quantum sensing i.e. certain modes contain information about the gravitational waves but are insensitive to the displacement noise. In this paper we derive quantum precision limits for general DFI schemes, including optimal measurement basis and optimal squeezing schemes. We introduce a triangular cavity DFI scheme and apply our general bounds to it. Precision analysis of this scheme with different noise models shows that the DFI property leads to interesting sensitivity profiles and improved precision due to noise mitigation and larger gain from squeezing. Further extensions of this scheme are presented
    • …
    corecore